Answer the following questions. Calculators, Phones and Pagers are not allowed.

Eeach question is worth 4 points

1. Evaluate each of the following limits, if it exists.

(a)
$$\lim_{x \to \infty} \sqrt[3]{\frac{1 - 8x^3}{x(x^2 + 1)}}$$

(b)
$$\lim_{x \to 0} \frac{\sin 2x - 2\sin x}{x \sin x}$$

2. Let
$$f(x) = 2 + \sqrt[3]{x^2 - 1}$$
.

- (a) Show that the graph of f has a vertical tangent at the point (1,2).
- (b) Does the graph of f have a cusp at the point (-1,2)?

3. Let
$$y = \sqrt[3]{2t^2 + t - 9}$$
 and $t = \cot 2x + \csc^2 2x - 4$. Find $\frac{dy}{dx}$ at $x = \frac{\pi}{8}$.

4. Let
$$f(x) = \begin{cases} \cos x & \text{if } x < 0, \\ 1 - x^3 & \text{if } x \ge 0. \end{cases}$$
. Use the definition of the derivative to find $f'(0)$.

- 5. Sand is falling into a conical pile at a rate of 2 m³/sec. The height of the cone is always ½ the radius of its base. Find the rate of change of the radius of the pile when it contains 48π m³ of sand.
- 6. Evaluate the following integrals.

(a)
$$\int_{0}^{\frac{\pi}{2}} \sin^5 x \cos x \, dx$$

(b)
$$\int \frac{x^2}{\sqrt{x^3+1}} dx$$

Let
$$f(x) = \frac{1}{\sqrt{2x+1}}$$
.

- (a) Find the average value of f on [4, 12].
- (b) Find a number z that satisfies the conclusion of the Mean Value Theorem for Definite Integrals.

8. Let
$$f(x) = \int_{1}^{x^3+x} \sqrt{7+t^4} dt + \int_{3}^{5} \cos^7 w dw$$
. Show that f is an increasing function on \mathbb{R} .

- 9. Find the arc length of the graph of the equation $y = \frac{3}{2}x^{\frac{2}{3}}$ from $A(1,\frac{3}{2})$ to B(8,6).
- 10. Let R be the region bounded by the curves $y = 2x x^2$ and y = 0.
 - (a) Find the area of R.
 - (b) Set up an integral that can be used to find the volume of the solid obtained by revolving the region R about the line x = 5.

Final Exam. Solution Key

Math. 101

May 27, 2001

1. (a)
$$\lim_{x \to \infty} \sqrt[3]{\frac{1 - 8x^3}{x(x^2 + 1)}} = \sqrt[3]{\lim_{x \to \infty} \frac{1 - 8x^3}{x^3 + x}} = \sqrt[3]{\lim_{x \to \infty} \frac{\frac{1}{x^3} - 8}{1 + \frac{1}{x^2}}} = \sqrt[3]{-8} = \boxed{-2}.$$

(b)
$$\lim_{x \to 0} \frac{\sin 2x - 2\sin x}{x \sin x} = \lim_{x \to 0} \frac{2\sin x \cos x - 2\sin x}{x \sin x} = 2\lim_{x \to 0} \frac{\cos x - 1}{x} = \boxed{0}.$$

2.
$$f'(x) = \frac{2x}{3(x^2-1)^{\frac{2}{3}}}$$
.

(a) Yes,
$$f$$
 is continuous at $x = 1$ and $\lim_{x \to 1^+} f'(x) = \lim_{x \to 1^-} f'(x) = \infty$.

(b) No,
$$f$$
 is continuous at $x = -1$ But,
$$\lim_{x \to -1^+} f'(x) = \lim_{x \to -1^-} f'(x) = -\infty$$

3.
$$\frac{dy}{dt} = \frac{4t+1}{3(2t^2+t-9)^{\frac{2}{3}}}, \quad \frac{dt}{dx} = -2\csc^2 2x - 4\csc^2 2x \cot 2x.$$

$$\left|\frac{\pi}{8}\right| = \boxed{-1}, \quad \left|\frac{dy}{dt}\right|_{t=-1} = \boxed{-\frac{1}{4}}, \quad \left|\frac{dt}{dx}\right|_{x=\frac{\pi}{8}} = \boxed{-12}, \quad \left|\frac{dy}{dx}\right|_{x=\frac{\pi}{8}} = \left|\frac{dy}{dt}\right|_{t=-1} \times \left|\frac{dt}{dx}\right|_{x=\frac{\pi}{8}} = \boxed{3}.$$

4.
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{(1 - x^3) - 1}{x} = 0$$
, $\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{\cos x - 1}{x} = 0 \Rightarrow f'(0) = 0$.

5.
$$V = \frac{1}{3}\pi r^2 h = \frac{2\pi}{9}r^3$$
, $2 = \frac{dV}{dt} = \frac{2\pi}{3}r^2\frac{dr}{dt}$, $\frac{dr}{dt}\Big|_{V=48\pi} = \boxed{\frac{1}{12\pi} \text{ m/sec}}$. $[r = 6 \text{ m, when } V = 48\pi \text{ m}^3]$.

2. (a) Put
$$u = \sin x$$
, $du = \cos x \, dx$, $\int_{0}^{\frac{\pi}{2}} (\sin x)^5 \cos x \, dx = \int_{0}^{1} u^5 du = \boxed{\frac{1}{6}}$.

(b) Put
$$u = x^3 + 1$$
, $du = 3x^2 dx$,
$$\int x^2 (x^3 + 1)^{-1/2} dx = \frac{1}{3} \int u^{-1/2} du = \frac{2}{3} u^{\frac{1}{2}} + C = \frac{2}{3} \sqrt{x^3 + 1} + C.$$

3. (a)
$$f_{av} = \frac{1}{12 - 4} \int_{-\sqrt{2x+1}}^{12} dx = \boxed{\frac{1}{4}}$$
. [Put $u = 2x + 1$, $du = 2dx$]

(b)
$$\frac{1}{4} = f(z) = \frac{1}{\sqrt{2z+1}}$$
. Solving for z gives $z = \frac{15}{2} = \boxed{7.5}$ which is in $(4, 12)$.

8.
$$f'(x) = (3x^2 + 1)\sqrt{7 + (x^3 + x)^4} > 0$$
, $\forall x \in \mathbb{R} \Rightarrow f$ is increasing on \mathbb{R} .

9.
$$y' = x^{-\frac{1}{3}}$$
, $L_1^8 = \int_1^8 \sqrt{1 + (y')^2} dx = \int_1^8 x^{-\frac{1}{3}} \sqrt{1 + x^{\frac{2}{3}}} dx = \sqrt[3]{25} - \sqrt{8}$. [Put $u = 1 + x^{\frac{2}{3}}$, $du = \frac{2}{3}x^{-\frac{1}{3}} dx$].

10.
$$y = 2x - x^2 = 1 - (x - 1)^2$$

(a) Area of
$$R = \int_{0}^{2} (2x - x^{2}) dx = \frac{4}{3}$$

(b) By Cylindrical Shells: Volume of shell =
$$2\pi (5-x)(2x-x^2) dx$$

Volume of the solid of revolution = $2\pi \int_{0}^{2} (5-x)(2x-x^{2}) dx$

